

RP-003-1015044 Seat No. _____

B. Sc. (Sem. V) (CBCS) Examination

February - 2019

S-503: Statistical Inference

(New Course)

Faculty Code: 003

Subject Code: 1015044

$\Gamma ime : 2\frac{1}{2}$	Hours]	[Total	Marks	:	70

Instructions: (i) All question carry equal marks.

- (ii) Student can use their own scientific calculator.
- 1 (a) Give the answer of following question:
 - (1) A single value of an estimator for a population parameter θ is called its _____ estimate.
 - (2) If an estimator T_n converges in probability to the parametric function $\tau(\theta)$, T_n is said to be a _____ estimator.
 - (3) If the expected value of an estimator T_n is equal to the value of the parameter θ , T_n is said to be _____ estimator of θ .
 - (4) If T_n is an estimator of a parametric function $\tau(\theta)$, the mean square error of T_n is equal to _____.

(b) Write any one:

- (1) Obtain an unbiased estimator of θ for $f(x,\theta) = \frac{1}{\theta}$; where $0 \le x \le \theta$.
- (2) Obtain sufficient estimator of θ for $f(x,\theta) = \frac{1}{\theta}e^{-\left(\frac{x}{\theta}\right)}$; where $0 \le x \le \infty$.
- (c) Write any one:

3

- (1) Obtain consistent estimator of p for binomial distribution.
- (2) If $t'' = \frac{1}{2}(t+t')$ where t and t' is the most efficient estimator with variance v then prove that $Var(t'') = \frac{1}{2}v(1+\sqrt{e})$.
- (d) Write any one:

- (1) If $x \sim N(\mu, \sigma^2)$ and μ is known then obtain unbiased estimator of σ .
- (2) If T_1 and T_2 be two unbiased estimator of θ with variance σ_1^2 , σ_2^2 and correlation ρ , what is the best unbiased linear combination of T_1 and T_2 and what is the variance of such combination ?
- 2 (a) Give the answer of the following question:
 - (1) If T_n is an estimator of a parameter θ of the density $f(x;\theta)$ the quantity $E\left[\frac{\partial}{\partial \theta}\log f(x;\theta)\right]^2$ is called the
 - (2) An estimator of $v_{\theta}(T_n)$ which attains lower bound for all θ is known as _____.

- (3) An unbiased and complete statistic is a _____ estimator provided MVUE exists.
- (4) For discrete variable Crammer-Rao inequality _____.
- (b) Write any one:

2

- (1) Find Cramer-Rao lower bound of variance of unbiased estimator of θ for $f(x,\theta)\theta = e^{-x\theta}$.
- (2) Define minimum variance bound estimator.
- (c) Write any one:

3

- (1) Obtain MVUE and MVBE of θ for Poisson distribution.
- (2) Independent observation $x_1, x_2, x_3, \dots, x_n$ taken from the following density function.

$$f(x,\theta) = \frac{1}{\theta}e^{-\left(\frac{x}{\theta}\right)}$$
; where $0 \le x \le \infty$

Find the Cramer Rao lower bound for variance of unbiased estimator of θ .

(d) Write any one:

- (1) State and prove Cramer-Rao inequality.
- (2) Obtain MVUE and MVBE of σ^2 for normal distribution.
- 3 (a) Give the answer of following question:
 - (1) If a random sample $x_1, x_2, x_3, ..., x_n$ is drawn from a population $N(\mu, \sigma^2)$, the maximum likelihood estimate of σ^2 is _____.
 - (2) Maximum likelihood estimate of the parameter θ of the distribution $f(x,\theta) = \frac{1}{2}e^{-|x-\theta|}$ is _____.

- (3) For a Gama (x,α,λ) distribution with λ known, the maximum likelihood estimate of α is _____.
- (4) For a rectangular distribution $\frac{1}{(\beta \alpha)}$, the maximum likelihood estimates of α and β are ____ and ___ respectively.
- (b) Write any one:
 - (1) Obtain likelihood function of negative binomial distribution.
 - (2) Estimate parameter θ by the method of moment for the following distribution $f(x,\theta) = \frac{1}{\theta}x$; where $0 \le x \le 1$.
- (c) Write any one:
 - (1) Obtain MLE of θ for the distribution $f(x,\theta) = (\theta+1)x^{\theta}$; where $0 \le x \le 1$.
 - (2) Estimate parameters α and β by the method of moment for the following distribution.

$$f(x,\alpha,\beta) = \frac{\alpha^{\beta}}{|\beta|} e^{-\alpha x} x^{\beta-1}$$
; where $x \ge 0, \alpha > 0$.

- (d) Write any one:
 - (1) Obtain MLE of α and λ for the following distribution.

$$f(x,\alpha,\lambda) = \frac{1}{|\lambda|} \left(\frac{\lambda}{\alpha}\right)^{\lambda} e^{-\left(\frac{\lambda}{\alpha}\right)} x^{\lambda-1}; \text{ where } 0 \le x \le \infty, \ \lambda > 0$$

where
$$\varphi(\lambda) = \frac{\partial}{\partial \lambda} \log |\overline{\lambda}| = \log \lambda - \frac{1}{2\lambda}$$
 thus

$$\varphi'(\lambda) = \frac{1}{\lambda} + \frac{1}{2\lambda^2}.$$

2

3

(2) For the double Poisson distribution

$$P(X = x) = \frac{1}{2} \frac{e^{-m_1} m_1^x}{x!} + \frac{1}{2} \frac{e^{-m_2} m_2^x}{x!}; 0, 1, 2, \dots$$

Show that the estimator for m_1 and m_2 by the method of moment are $\mu_1' \pm \sqrt{\mu_2' - \mu_1' - (\mu_1')^2}$.

- 4 (a) Give the answer of following question:
 - (1) Accepting H_0 when H_0 is false is _____ error.
 - (2) Probability of type I error is called _____.
 - (3) If β is the probability of type II error, the power of the test is ____.
 - (4) A null hypothesis is rejected if the value of a test statistics lies in the _____.
 - (b) Write any one:

2

- (1) Define MP test.
- (2) Given a random sample $x_1, x_2, x_3, \dots, x_n$ from the distribution with pdf $f(x, \theta) = \frac{1}{\theta}$; where $0 \le x \le \theta$. Obtain power of the test for testing $H_0: \theta = 1.5$ against $H_1: \theta = 2.5$ where $c = \{x: x \ge 0.8\}$.
- (c) Write any one:

3

(1) Give a random sample $x_1, x_2, x_3, \dots, x_n$ from distribution with p.d.f. $f(x;\theta) = \theta e^{-\theta x}$; $0 \le x \le \infty$, $\theta > 0$. Use the Neyman Pearson Lemma to obtain the best critical region for testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$.

- (2) Let p be the probability that coin will fall head in a single toss in order to test $H_0: p = \frac{1}{2}$ against $H_1: p = \frac{3}{4}$. The coin is tossed 5 times and H_0 is rejected if more than 3 heads are obtained. Find the probability of type-I error, type-II error and power of test.
- (d) Write any one:

5

- (1) State and prove the Neyman-Pearson Lemma.
- (2) Use Neyman-Pearson Lemma to obtain the best critical region for testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$ in the case of normal distribution $N(\theta, \sigma^2)$ where σ^2 is known
- 5 (a) Give the answer of following question:
 - (1) Likelihood ratio test for testing a hypothesis, simple or composite, against a _____ or ____ alternative hypothesis.
 - (2) Likelihood ratio test is relation the maximum _____ estimates.
 - (3) To decide about H_0 , SPRT involves _____ regions.
 - (4) The decision criteria in SPRT depends on the function of _____ and ____ errors.
 - (b) Write any one:

2

- (1) Define UMP test.
- (2) Define ASN function of SPRT.
- (c) Write any one:

3

(1) Construct SPRT of binomial distribution for testing $H_0: \theta = p_0$ against $H_1: \theta = p_1 (> p_0)$.

- (2) If $x \sim N(\mu, \sigma^2)$. To likelihood ratio test $H_0: \sigma^2 = \sigma_0^2$ against $H_1: \sigma^2 \neq \sigma_0^2$.
- (d) Write any one:

(1) Let sample distribution $x_1, x_2, x_3, \dots, x_n$ taken from

$$f(x,\theta) = \frac{1}{\sqrt{2\pi}} e^{-\left\{\frac{(x-\theta)^2}{2}\right\}} \text{ where } -\infty \le x \le \infty,$$
$$-\infty \le \theta \le \infty.$$

To likelihood ratio $H_0: \theta \le \theta_0$ against $H_1: \theta \le \theta_0$.

(2) Give the SPRT for test $H_0: \lambda = \lambda_0$ against $H_1: \lambda = \lambda_1 (> \lambda_0)$, in sampling from a Poission distribution. Also obtain its OC and ASN function.